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Introduction

 When a brain region is involved in the performance 
of a specific task, its neuronal activity generates 
changes in the blood oxygen level dependent (BOLD) 
signal. These changes are measurable under specific 
sequences of magnetic resonance imaging [1,2].This 
kind of acquisitions are known as functional mag-
netic resonance imaging (fMRI) and the variations 
in the intensity of their signal are due to the chang-
es in the relation between oxygenated and deoxy-
genated hemoglobin in the brain blood vessels as a 
consequence of the increase in oxygen income trig-
gered by different metabolic mechanisms both of 
neuronal and astrocytic origin [3,4]. Neural activity 
can be studied both in resting state and during mo-
tor or cognitive tasks. Despite the existence of cer-
tain agreement regarding the BOLD signal basis, 
there rare different approaches to the analysis of 
the fMRI data. In these approaches, the concepts of 
functional and effective connectivity are frequently 
applied. The first is related to the correlation mea-
sures between the variations in BOLD signal taken 
from different brain regions and the second one is 

related to the causal effect of a cortical region over 
another [5,6]. In the same line, the brain activity 
can be decomposed into a series of independent 
components determined by activity changes in a 
coordinated shape across the time [7-9] or as a sum 
of nodes interconnected by axis [5]. Some of them 
are so highly connected and influential over the 
brain dynamic that has been called as ‘rich club’ or-
ganization [10,11]. 

Under the theoretical construct previously shown, 
fMRI has provided abundant evidence regarding 
the underlying mechanisms of neurologic and neu-
ropsychiatric diseases as depression [12] or schizo-
phrenia [13], and the neural mechanisms related to 
their response to treatment [14].

Multiple sclerosis (MS) is an inflammatory and 
neurodegenerative disease characterized by the loss 
of myelin in the white matter and eventually axonal 
loss [15,16]. So, many of its manifestations have 
been attributed to the development of a disconnec-
tion syndrome. Indeed, from the neuroimaging 
perspective, both structural –diffusion tensor im-
aging (DTI)– and functional connectivity approach-
es have shown to coexist and give a report of dis-

Functional magnetic resonance imaging in the study  
of multiple sclerosis

Tomás Labbé, Ethel Ciampi, Juan P. Cruz, Mariana Zurita, Sergio Uribe, Claudia Cárcamo

Interdisciplinary Center of Neuro- 
sciences (T. Labbé, C. Cárcamo); 
Neurology Department, Faculty of 
Medicine (E. Ciampi); Radiology 
Department, Faculty of Medicine 
(J.P. Cruz, S. Uribe); Biomedical 
Imaging Center (M. Zurita, S. Uribe); 
Pontifical Catholic University of Chile. 
Faculty of Medicine; Universidad 
San Sebastian (T. Labbé). Santiago, 
Chile. 

Corresponding author:
Dra. Claudia Cárcamo Rodríguez. 
Neurology Department. School  
of Medicine. Pontifical Catholic 
University of Chile. Marcoleta, 350, 
2.º. Santiago, Chile.

E-mail: 
esclerosismultipleuc@gmail.com

Funding:
T.L. acknowledges CONICYT 
(Comisión Nacional de Ciencia y 
Tecnología, Chile) for the doctoral 
scholarship during the development 
of this manuscript.

Accepted: 
22.03.18.

How to cite this paper:
Labbé T, Ciampi E, Cruz JP, Zurita M, 
Uribe S, Cárcamo C. Functional 
magnetic resonance imaging  
in the study of multiple sclerosis. 
Rev Neurol 2018; 67: 91-8.

Versión española disponible  
en www.neurologia.com

© 2018 revista de Neurología

Introduction. Multiple sclerosis (MS), a neuroinflammatory and demyelinating disease, modifies the normal connectivity 
among different brain regions involved in specific functions. Functional magnetic resonance imaging (fMRI), based on 
local changes in oxygen level as a response to the increase in neural activity, provides an approach to neural connectivity 
and brain dynamics which give us an overview on visual, motor and cognitive dysfunction and their mechanisms. 

Development. An advanced search was performed using PubMed. Terms ‘fMRI’, ‘visual’, ‘motor’, ‘cognitive’ and ‘multiple 
sclerosis’ included in title and abstract were considered. We focus on original articles available in English. Articles were 
included based on their abstracts, looking for those potentially useful for understanding functional changes in MS. An 
important amount of studies have used fMRI as a complementary tool in the study of MS and clinically relevant alterations 
compromising visual, motor and cognitive domains. Since the earliest stages of the disease, local activity, and global 
neural dynamics appear to be compromised. Even when functional performance is still preserved, a different recruitment 
of neural resources arises as a compensatory response to disconnection observed in the disease. 

Conclusions. The main findings of fMRI applied to MS are strongly related to the demyelinating nature of the disease and 
provide an adequate insight into the mechanisms that underlie functional alterations reported in this disease. fMRI also 
appears to be useful for studying disease evolution and response to treatment in MS and other disorders.

Key words. fMRI. Functional neuroimaging. Multiple sclerosis. Nervous system disease. Neurodegenerative diseases. 
Neuroimaging.
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connection underlying disability and cognitive 
changes [17]. Beyond its potential to generate dis-
ability in young people, one of the most interesting 
issues in MS is that 40-70% of patients develop 
some level of cognitive impairment [18] despite de 
wide variability in lesion load and brain atrophy. 

The main objective of this article is to provide an 
insight on how fMRI has contributed to the under-
standing of the impact of MS in different functional 
systems and how it could be useful for being ap-
plied to the study of other diseases. 

Development

An advanced search was performed using PubMed 
web platform. The terms ‘fMRI’, ‘multiple’ and ‘scle-
rosis’ as included in title and abstract were consid-
ered to perform the search. Only articles published 
during the last ten years were considered. Never-
theless, some older articles regarding MS or fMRI 
technique are mentioned in order to provide con-
ceptual context. A list of 200 articles was initially 
obtained. All of them were classified as potentially 

relevant or irrelevant for this systematic review 
based on its title and abstract. 71 potentially rele-
vant articles were analyzed (considering full text) 
and finally 51 articles were included. After full text 
analysis, we included 29 articles evaluating clini-
cally relevant functions (as visual, motor and cogni-
tive abilities) through an experimental design based 
on fMRI acquisitions. We also included resting 
state studies in MS patients. Articles not including 
fMRI, or those developed in other clinical popula-
tions were excluded. Figure 1 shows the flowchart 
of the strategy for search and include articles. A 
considerable amount of additional articles are cited 
in the text with explanatory purposes, most fre-
quently in the introductory paragraphs and in the 
contextualization of resting state fMRI.

Task-related fMRI

Probably, the most solid conclusion derived from 
fMRI studies in MS is related to the existence of 
cortical reorganization occurring in patients [19]. 
Nevertheless, as clinical and structural findings dif-
fer among MS subtypes, the related fMRI findings 
must vary between relapsing remitting (RR) and 
progressive forms of the disease. Even if counterin-
tuitive, cortical plasticity is not always related to 
good news. In the following paragraphs, we discuss 
evidence regarding neural plasticity responses in 
neural systems commonly affected in MS patients. 

Visual system
One of the first protocols investigating changes in 
the visual system in MS using fMRI applied a mon-
ocular photic stimulation to seven patients who 
had recovered from a unique episode of unilateral 
optic neuritis. They showed higher activation of 
the visual network including claustrum, posterior 
and lateral parietal cortex and thalamus besides 
the activation of primary visual cortex when stim-
ulating the affected eye. Interestingly, when stimu-
lating the unaffected eye, only insula, claustrum 
and primary visual cortex were activated. These 
findings were strongly related to the latency of vi-
sually evoked potentials, suggesting cortical reor-
ganization may represent an adaptation to perma-
nently abnormal input [20]. Additional research 
has supported this idea [21] and supplemented the 
whole picture by reporting a decrease in the acti-
vation of the primary visual cortex [22]. Taken to-
gether, this evidence establishes a general mecha-
nism by which brains react to a demyelinating le-
sion to compensate functional alterations: a de-
crease in the participation of primarily involved 

Figure 1. Flowchart of the search strategy.
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brain areas and a compensatory increase in the re-
cruitment of non-related regions. 

The dynamic functional recovery after an epi-
sode of optic neuritis has been also studied. Korsh-
olm et al followed 19 patients during six months 
after the first clinical episode of MS, and reported 
significantly lower activation of the lateral cingulate 
nucleus in the acute phase when visual stimulation 
was applied. Furthermore, this difference between 
eyes decreased during recovery and finally disap-
peared during the follow-up [23]. This has been in-
terpreted as early plasticity phenomena. Even if a 
dynamic behavior of neural plasticity event has 
been established, its temporal profile during the 
disease evolution and its contribution to preserva-
tion or impairment in different functions still re-
main undefined. Figure 2 shows a schematic repre-
sentation of both normal and abnormal processing 
of visual input in MS.

Motor system 
When considering the motor system, the notion of 
adaptive or maladaptive plasticity arises again. When 
comparing motor-impaired MS patients with those 
motor-preserved groups, both considering RR and 
progressive patients, fMRI has allowed establishing 
differences from the perspective of neural networks. 
Those patients with preservation of motor skills 
have shown higher functional connectivity in visual 
processing areas and patients with motor impair-
ment show lower levels of functional connectivity in 
somatosensory association cortices, even in the ab-
sence of significant differences in lesion load [24]. 

On the other hand, the study of motor functions 
during fMRI recordings has provided evidence of 
disorganization in brain cortex since the earliest 
stages of the disease. A group of patients with clini-
cally isolated syndrome was followed during a year 
in order to compare cortical activity patterns in 
those who remain under the diagnosis of clinically 
isolated syndrome and those who progress to MS. 
Non progressive subjects showed higher activation 
of areas integrating motor network while the pro-
gressive group showed higher activity in several 
frontal, parietal, temporal and occipital areas [25]. 
Even if a higher recruitment of cortical surface can 
contribute to limit the impact of structural damage 
during the MS natural history, the early activation 
of those mechanisms could produce an early con-
sumption of the brain’s adaptive properties [19], 
commonly observed in patients with a more pro-
gressive phenotype.

The fatigue, a major clinical event in MS [26], 
has been also evaluated under fMRI paradigms. The 

subjective levels of fatigue have been related to 
changes in the cortical activity of certain areas as 
caudate, putamen, pallidum, thalamus and amygda-
la during demanding motor tasks and in relation 
with rest periods in RR with minimal levels of dis-
ability as measured by the Expanded Disability Sta-
tus Scale [27]. In the same line, it has been demon-
strated that in fatigued patients, executive and mo-
tor areas exhibit abnormal activation during motor 
tasks requiring prolonged effort [28]. These find-
ings suggest that alterations in the activity of motor 
and non-motor areas are related with the appear-
ance of fatigue as an important symptom of MS, 
identifying it as a complex phenomenon with a ba-
sis in the neural dynamics.

Figure 3 shows a schematization of normal and ab-
normal motor process since planning to execution.

Cognitive functions
In the current management of the disease, cognitive 
dysfunction represents a big therapeutic challenge, 
especially considering that in early stages of the dis-
ease, more than 50% of patients will exhibit some 
significant cognitive dysfunction [29-31]. As in oth-
er neurodegenerative diseases, the pattern of cogni-
tive decrease in MS is relatively well known and af-
fects specifically working memory, processing speed 

Figure 2. Schematic comparison of input processing. a) Normal sensory 
input processing involving primary and association cortices in a well 
limited way; b) In an injured brain as in multiple sclerosis, a sensory in-
put generates variable activation of primary cortices and then abnor-
mal recruitment of association cortices leading to abnormal perception 
or interpretation of input.

b

a



94 www.neurologia.com Rev Neurol 2018; 67 (3): 91-98

T. Labbé, et al

[32], verbal fluency and executive functions [33]. 
The compromise of these functions directly affects 
daily living skills [34] and social functioning [35].

Considering this profile, studies using fMRI and 
Paced Auditory Serial Addition Test working mem-
ory test in early stages of the disease have shown 
that a preserved performance in the task is related 
to a higher activation of frontopolar, prefrontal and 
cerebellar cortices [36] and Brodmann areas 44 and 
45 [37]. This provides evidence about how, even in 
cognitively preserved subjects, changes in neural re-
sources involved in specific functions can be found 
[38], both by the higher recruitment of non-related 
areas, as supplementary motor cortex during work-
ing memory tasks [39] or by changes in activity 
properties of regions highly related to cognitive 
functions, as centrality measures of default-mode 
network (DMN) regions [40]. In the same line, since 
early stages of the disease alterations in how brain 
answer to an increase in cognitive demands has 
been demonstrated [41,42]. It adds complexity to 
the cognitive study of those patients because some 
alterations may remain at a subclinical level depend-
ing on cognitive demands of the environment.

Additionally, the impact of cognitive rehabilita-
tion on the functioning of neural networks has also 
been studied using fMRI. Subjects included in this 
kind of management have reported improvement 
in processing speed performance and higher acti-

vation of prefrontal and temporoparietal regions 
[43], providing an objective neurodynamic basis to 
evaluate the response to this or another kind of 
treatments.

Social cognition domain has recently become a 
focus of interest for MS teams and fMRI has been a 
useful tool in this area. When face expressions rec-
ognition tasks have been applied, differences in 
cortical recruitment have been found among dis-
ease phenotypes [44]. 

Resting-state fMRI in MS

The study of the BOLD signal in absence of cogni-
tive or motor tasks has allowed obtaining a view of 
the intrinsic functional architecture of human 
brain. Interestingly, some studies in free task condi-
tions have reported that spontaneous neural activi-
ty does exist in a group of cortical and subcortical 
regions in different locations but functionally relat-
ed, including visual, motor and cognitive control 
areas [45,46]. If we pay attention to this last group, 
using posterior cingulate cortex as a region of in-
terest, there are regions in which resting state sig-
nal is positively correlated, as medial prefrontal 
cortex, and negatively correlated as intraparietal 
sulcus, frontal orbital fields and medial temporal 
regions [47]. Thus, the brain is intrinsically orga-
nized into networks operating even in absence of 
an overt cognitive or motor behavior.

Some of the most commonly considered resting 
state networks both in the study of healthy and dis-
ease populations would be: auditory and language 
processing, visual processing, executive functioning, 
sensorimotor network, attentional network, default 
mode network, right frontoparietal network, and left 
frontoparietal network [48-55]. Figure 4 shows ex-
amples of resting state networks on healthy subjects.

Despite the big amount of information derived 
from fMRI acquisitions, the accuracy of its inter-
pretations depends on an adequate data processing 
and analysis. Two of the most frequent approaches 
to the study of brain connectivity beyond the local 
changes in BOLD signal are independent component 
analysis (ICA) and graph theory. In the first case, 
ICA decomposes the brain dynamics into spatial maps 
of regions with correlated changes in neural activity 
during the time [7]. In the other hand, graph theory 
evaluates the influence of brain regions over other 
areas or over the entire brain and describe each re-
gion of interest –or nodes– using terms as the de-
gree of a node, clustering, modular organization 
and global efficiency to characterize the influence 
of each node on close and distant regions [5].

Figure 3. Schematic comparison of normal and abnormal motor processes. a) In a healthy brain, after a 
specific motor planning, a circumscribed participation of motor cortices leads to an accurate motor per-
formance; b) In a brain with altered networks all steps, since planning to execution of movement can 
lead to an abnormal motor outcome.

a

b
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In the specific case of MS, resting state fMRI (rs-
fMRI) has provided a higher degree characteriza-
tion of correlation between structural disconnec-
tion, as measured by DTI and functional changes 
[17]. Also, it has contributed to understanding the 
network reorganization following the initial appear-
ance of an acute lesion [56]. When considering tem-
poral evolution of functional connectivity compen-
sations, a global pattern has been established. An 
initial enhancement of brain connectivity decreases 
during the disease course and this decrease is relat-
ed to disability progression [57]. Also, some specific 
functional connectivity patterns, as those alterations 
in anterior cingulate cortex, often characterize clini-
cally isolated syndrome patients who progress to RR 
MS [58]. As a view to the different stages of the ill-
ness, 14 patients with clinically isolated syndrome, 
31 patients with RR MS and 41 healthy controls 
were studied. Clinically isolated syndrome patients 
showed increased synchronization in six of the eight 
identified resting state networks, including the 
DMN and sensorimotor network, compared to con-
trols or RR MS patients. When the disease progress-
es, no significant resting state synchronization dif-
ferences were found between patients and controls, 
suggesting that this specific cortical reorganization 
of resting state networks is an early and finite phe-
nomenon in MS [59]. 

Even if the previously described study reported 
that resting state networks changes were limited to 
the clinically isolated syndrome stage, in a different 
experimental design including 13 patients with RR 
MS patients and 14 matched healthy controls, ICA 
provided eight consistent neuronal networks in-
volved in motor, sensory and cognitive processes 
and for seven resting state networks, the global lev-
el of connectivity was significantly increased in pa-
tients compared with controls. Interestingly, no sig-
nificant decrease in connectivity measures was 
found in early multiple sclerosis patients. Given the 
relevance of well-validated scores to measure dis-
ability in the clinical follow-up of MS the correla-
tion among those scales and resting state connec-
tivity has been studied. The disability level as mea-
sured by the Multiple Sclerosis Functional Com-
posite Score values were negatively correlated with 
increased connectivity within the dorsal frontopa-
rietal network, the right ventral frontoparietal net-
work and the prefrontal-insular network [60]. Also, 
connectivity has reported being shifted toward the 
DMN in cognitively less-efficient participants (an-
ticorrelation), whereas it was shifted toward the 
control network in cognitively efficient participants 
(positive correlation) [61]. This evidence shows that 

it is possible to identify resting state change pat-
terns with both an adaptive and maladaptive role in 
cognitive functioning. 

Considering that clinical and anatomic features 
exhibit considerable variances between disease 
phenotypes, group differences in DMN activity 
were found in the left medial prefrontal cortex, left 
precentral gyrus, and anterior cingulate cortex, ex-
hibiting different patterns for each group also re-
lated to cognitive performance [62]. That evidence 
must be interpreted as related to the role of sponta-
neous regional brain activity as an insight into the 
mechanisms underlying of behavioral impairment 
in MS [63]. 

When more subjective symptoms often reported 
in MS are studied under a rs-fMRI paradigm, inter-
esting findings have also been reported. In sleep-
disturbed patients, decreased functional connectiv-
ity between cognitively relevant areas as the thala-
mus, superior frontal gyrus, opercular cortex, cin-
gulate, parietal cortex and precuneus have been 
shown, providing a neurodynamic explanation for 
some severe sleep disturbances in MS [64]. In the 

Figure 4. Resting state networks. During mental rest, some brain areas exhibit correlated changes in 
their neural activity constituting well-differentiated functional units (here some examples). a) Default mode 
network: medial prefrontal cortex (MPFC), posterior cingulate cortex (PCC) and lateral parietal (LP); b) 
Dorsal attentional network: frontal eye fields (FEF), inferior parietal sulcus (IPS); c) Language network: 
inferior frontal gyrus (IFG), posterior superior temporal gyrus; d) Salience network: rostral prefrontal cor-
tex (RPFC), anterior cingulate cortex (ACC), anterior insula (Ainsula) and supramarginal gyrus (SMG).

a

c

b

d
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case of fatigue, neurodynamic properties of the in-
sula, caudate [65] and motor and executive network 
are contributing to the occurrence of centrally pro-
duced and persistent fatigue while hippocampal 
functional connectivity has reported being strongly 
correlated with severity of depressive symptoms 
and disability levels [66].

Also, rs-fMRI has reported being a useful tool 
for monitoring the therapeutic response based on 
functional reorganization [67,68], proposing an in-
teresting role in the follow-up of these patients.

Conclusions

fMRI has strongly contributed to understanding 
neural mechanism underlying motor, visual and 
cognitive alterations in MS. Today, neural plasticity 
is a well-documented phenomenon occurring after 
an inflammatory and demyelinating lesion in the 
central nervous system. Despite the initially adap-
tive role of both structural and neurodynamic com-
pensations during the early stages of the diseases, 
its prognostic utility and the potential for predict-
ing phenotypes and evolution ways still remain un-
resolved. We consider fMRI contributions will in-
crease when local clinical teams involved in the 
management of MS patients consider fMRI as a 
permanent part of the follow up of patients. At the 
same time, correlating fMRI findings with clinical 
performance in standardized neuropsychological 
evaluations will provide interesting additional evi-
dence both in MS and in other neurological and 
neuropsychiatric diseases.
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T. Labbé, et al

Imágenes de resonancia magnética funcional en el estudio de la esclerosis múltiple

Introducción. La esclerosis múltiple (EM), una enfermedad neuroinflamatoria y desmielinizante, modifica la conectividad 
normal entre las diferentes regiones del cerebro involucradas en funciones específicas. La resonancia magnética funcional 
(RMf), basada en cambios locales en el nivel de oxígeno como respuesta al aumento de la actividad neuronal, proporcio-
na un enfoque a la conectividad neuronal y la dinámica cerebral que ofrece una visión general de la disfunción visual, 
motora y cognitiva y sus mecanismos. 

Desarrollo. Se realizó una búsqueda avanzada en PubMed considerando los términos ‘fMRI’, ‘visual’, ‘motor’, ‘cognitive’ y 
‘multiple sclerosis’ incluidos en el título y el resumen. La búsqueda se centró en artículos originales disponibles en inglés, 
con énfasis en los útiles para comprender los cambios funcionales en la EM. Numerosos estudios han utilizado la RMf 
como una herramienta complementaria en el estudio de la EM y las alteraciones clínicamente relevantes de la afectación 
visual, motora y cognitiva. Desde las primeras etapas de la EM, la actividad local y la dinámica neural global parecen estar 
afectadas. Incluso cuando el desempeño funcional aún se conserva, surge un reclutamiento diferente de los recursos 
neuronales como respuesta compensatoria a la desconexión observada en la enfermedad. 

Conclusiones. Los principales hallazgos de la RMf aplicada a la EM están fuertemente relacionados con la naturaleza des-
mielinizante de la enfermedad y proporcionan una visión adecuada de los mecanismos subyacentes a las alteraciones 
funcionales. La RMf también parece ser útil para estudiar la evolución de la enfermedad y la respuesta al tratamiento en 
la EM y otros trastornos.

Palabras clave. Enfermedad del sistema nervioso. Enfermedades neurodegenerativas. Esclerosis múltiple. Neuroimagen. 
Neuroimagen funcional. RMf.


